
MATHEMATICS OF COMPUTATION, VOLUME 29, NUMBER 130

APRIL 1975, PAGES 434-446

GAP-A PIC-Type Fluid Code

By B. M. Marder

Abstract. GAP, a PIC-type fluid code for computing compressible flows, is

described and demonstrated. While retaining some features of PIC, it is felt that

the GAP approach is conceptually and operationally simpler.

I. Introduction. Particle-in-cell type codes have proven to be useful in simulating

compressible fluid behavior, especially where free surfaces, complicated boundary
conditions, or multiple species flow are encountered. In this paper, we present a varia-
tion of the PIC [1] method. It is felt that this method is conceptually and operation-
ally simpler than PIC and, in some respects, it is more versatile.

II. The GAP Code. We shall refer to the code described in this paper as GAP
(grid and particles). In GAP, as in PIC, a number of particles which represent the
fluid move on a fixed background grid. These particles serve as markers of fluid posi-
tion and carriers of fluid properties. For simplicity, only the one-dimensional case will
be described; the two-dimensional extension is straightforward, although computationally
more ambitious. It is our purpose, in this paper, only to present the basic GAP method.
We will, therefore, consider only one-dimensional, one-material flow. Heat conduction
and viscosity will be touched on briefly.

The system we wish to treat is described by the set of equations [2]

ap + a(pv) = o, pav + pvav + ap = O
(1) ~~~~at ?ax =0,x a

de = Tds - pdTr, p = p(e, p), T= T(e, p), s = s(e, p),

where:

p is fluid density r is specific volume
v is velocity T is temperature
e is specific internal energy s is specific entropy

and
p is pressure.

We include the possibility of discontinuous solutions.
The particle and grid quantities used in GAP are listed below.

Received October 23, 1973.
AMS (MOS) subject classifications (1970). Primary 76-04; Secondary 65P05.

Copyright ? 1975, American Mathematical Society
434

GAP-A PIC-TYPE FLUID CODE 435

Particle Quantities Grid Quantities
M mass p density
X position p pressure
V velocity e specific internal energy
E internal energy f force

U volume

Notice that in addition to mass, position, and velocity, each particle has two

independent thermodynamic variables. In this sense, each particle carries all the local

fluid information. The grid serves only to store spatial averages.
In describing the GAP algorithm, we let an n subscript denote quantities associated

with the nth particle while (L) refers to the Lth grid point. A "k" superscript denotes

the location of the variable in time. That is, pk(L) is the density at time KAT and
location LAX. V7k+1/2 is the velocity of the nth particle at time (k + ?M)AT.

The GAP algorithm will now be described. On a fixed background grid which

represents the domain of the problem, a number of particles are positioned so as to

yield the desired initial conditions. By "positioning particles", we mean that values of

Xn are specified. Initial velocities, Vn-l / are also supplied in a manner consistent with

the desired velocity distribution. The mass, Mn, and initial volume, U2, are assigned in

accordance with the desired density. There is some freedom in the method of loading

the particles, and some criterion such as equal masses or uniform spacing must be

applied. Finally, the particle internal energy, Eo, is given to yield the initial pressure.

Before we begin to "push particles", we must elaborate on the relationship be-

tween grid and particle quantities. We will need to define a value of grid quantities at

particle positions. That is, we will want the values of the force or the density at the

particle location. We do this by a linear interpolation. If the particle position Xn lies

between the L and L + 1 grid point, the force felt by that particle is simply

fn = 8f(L + 1) + 87f(L),

where 8 = [(L + 1)AX - Xn]/AX and 8' = [Xn - LAX] IAX. Notice the notation:

although f (L) is a grid quantity, fn is the interpolated value of this quantity at Xn .

To obtain grid quantities, such as density, from the particles, we do essentially

the inverse. Again, if Xn lies between LAX and (L + 1)AX, the mass Mn contributes

to both grid points. That is, to the L grid point the particle contributes Mn5' while

giving Mn5 to the L + 1 grid. When the sum is performed over all the particles, each

grid point has a mass which is the "area weighted" total of the masses of all particles

within a distance AX of it. All particles lying between (L - 1)AX and (L + 1)AX

contribute to the mass at grid point L. When this mass is divided by the effective

volume of a grid point, AX in the interior, AX/2 on the boundary, the density p(L) is

obtained. A similar normalized sum over internal energy, En, gives the grid specific

internal energy, e(L).

436 B. M. MARDER

The GAP algorithm can now be described:
1. Assume Mn, Xk, Vk-/2, and Uk are known for the particles and pk(L) is known

on the grid.
2. Advance Vnk and Xk for each particle by

n n~~n
(2) M Vk+'12- V -1/2

Uk AT =~

The force felt by each particle is obtained from the grid force defined by f (L + 1/2) =

(1/AX)p(L + 1) - p(L)]. Mn/LUk is the particle's density at time step k. The relation-

ship

(3) ~~~~~(Xyk +I y
Xk)/At = Vk + /2

gives the particle's new position.
3. From the new particle positions, the density, pk+ '(L), is computed and, from

it, new particle volumes are found by

(4) Un+ = MnlPn

where p k+ 1 denotes density linearly interpolated to the particle's position, Xk+ 1.

4. The pdU part of the particle's internal energy is updated by

(5) E~~~~~n En = _Pn(n Unl

Alternatively, since each particle carries its thermodynamic variables, the functional

form of p, p [?2(Ek'+ 1 + E), 2(Uk+ 1 + Unk)], can be used to yield an implicit equa-

tion for Ek+1
5. Finally, in a manner similar to the density, the grid internal energy is

computed and is used with the density to update the grid pressure.
Notice that, since thermodynamic information is carried by the particles, we have

a very simple form for the energy equation, (5). When the implicit form of this equa-

tion can be solved for En+ 1, second-order accuracy in time is achieved for the system

(2) through (5).
To complete the numerical solution to Eqs. (1), we must include the entropy

contribution to the internal energy. This is accomplished by introducing a numerical

viscosity in the form of a particle drag. This viscosity serves a dual purpose. Since

velocity and specific internal energy are single-valued functions of position, the quan-

tities carried by the particles in the area should not differ much from the ensemble

average. That is, large local fluctuations in particle quantities cannot be tolerated. The

numerical viscosity used here enables particles to "communicate" and thus damps out

local anomalies should they occur.
A simple example will help clarify these concepts. Consider the plane piston

problem in which a piston is driven into a cold (p = e = 0) gas at rest. The analytic
solution predicts a shock moving into the gas at a speed greater than that of the piston.

If we use an ideal gas approximation in which p = (- 1)ep with y = 5/3, the density

GAP-A PIC-TYPE FLUID CODE 437

behind the shock increases by a factor of 4. Consider now what happens if we attempt
to simulate this problem using the method as it has been described. As the piston en-
counters particles, it reflects them with twice the piston velocity. These particles stream
through the undisturbed gas, but the pressure and internal energy remain zero since

de = -pdU and p=(y - 1)ep.

Thus, the density will only double and the pressure will remain zero. Of course, the
addition of explicit dissipation, such as viscosity or heat conduction, will generate
internal energy and produce shock-like behavior, but the particle streaming will not be
effectively checked.

What the numerical viscosity does is "smooth" the flow in such a manner that
particle quantities will not differ too much from some average. This is done in such
a way as to conserve total momentum and energy. To motivate the final form of the
smoothing, we first look at some alternatives. One way to smooth would be on a cell
basis. That is, we periodically compute for each cell a mean velocity such that, if each
particle in that cell were given that velocity, the momentum contained in the cell would
not be altered. Such a velocity is given by V(L) = I2Mn VnI/2Mn, where the sum is over

all particles lying in the cell labeled "L". Although the momentum in the cell is un-

changed by this process, the kinetic energy will be altered. If the cell contained only
two particles with opposite momenta, the V would be zero, but 2.M1 V?2 + ?M2 V2 in

kinetic energy would be lost. To conserve total energy, the change in a particle's kinetic

energy is given directly to its internal energy: AEn = -?,M,A(V2). Finally, the internal
energy can be similarly smoothed over the cell so that each particle in the cell has the
same specific internal energy, En = Mn2Ej/12M1. Such a process would indeed smooth
the flow and generate internal energy at the expense of kinetic. That is, it would act
as an effective viscosity on a particle basis. The method described is much too crude,
however, since it is discontinuous and time-step dependent. Let us consider a second

approach which does essentially the same thing but does it on an area weighted basis.
The method will be described, using two particles for simplicity, as illustrated in Fig. 1.
The area weighted average velocity and internal energy are given symbolically by

V(L) = EMnVnn/ Mn5n

where 8n represents either 8' or 8 for the nth particle. The sum is performed over all

particles lying in the two cells between (L - 1) and (L + 1). The particle velocities are

now reassigned from the V(L) by linearly interpolating from the grid.

V1 = V(L - 1) + ? 1 V(L), E1 = E1l/2MA(V12),
(6)

V2 = 2 V(L) + 2 V(L + 1), E2 = E2 -2M2A(V2).

Again, the energy and momentum given to the grid are exactly matched by those re-
turned to the particles, so these quantities are conserved.

438 B. M. MARDER

k8-AX s8' AX 4- 8 Ax A8tx4
I * I 2 2 l

L-1 I L 2 L+I

FIGURE 1. Grid and two particles

By comparing the mean values of velocity at three adjacent grid points before and
after the smoothing operation, one can show that, for uniformly spaced particles, the
dissipation is given by

(7) aj 1_ (AX)2 a 2V O /A Y4\ +0
at 6At aX2 0(t) KKt)?OQ--)'

where N is the number of particles per cell.
Thus, while this method of smoothing is continuous and superior to the first

method, the amount of numerical diffusion introduced by smoothing in this manner
becomes prohibitively large as At decreases. This can be overcome by doing essentially
the smoothing described here but on a fractional basis. That is, if Vn is the initial
particle velocity and In is the interpolated velocity obtained from V(L) which the
particle would have if smoothed, the desired velocity, Vn, lies somewhere between:

(8) Vn = Vn + F(Vn -Vn), O < F < 1 .

If F = 0, no smoothing occurs; if F = 1, total smoothing is performed. The dissipation
resulting from this approach has the form

(9) av V y2 Fa2v (FO(A)?o(0+).
(9) at 6At FaX2 ?O(t)?O

Thus, if F is made proportional to At, the numerical diffusion will be independent of
time step. This means, we smooth more often as the time step decreases, but we do
less each time. From the definition of Pn, we see that momentum is still conserved:

(10) EMn V = E Mn Vn VF(Mn Vn - EMn Vn) E Mn Vn
n n n

A final requirement must be met before we arrive at the final form of the smooth-
ing operation. It is desirable to be able to apply the smoothing selectively in space.
We generally want a small amount of smoothing to prevent local fluctuations from
developing, but we need to provide additional smoothing in shocks and perhaps none at
all in rarefactions. The smoothing parameter F should be sensitive to local conditions.
To achieve this, we make it a quantity carried with the particles and denote it by Fn.
To insure momentum conservation with a particle Fn, we modify our definition of Vn,
the mean velocity toward which the particle velocities tend. Assuming Fn has been
determined for each particle, we redefine

(11) V(L) MnFn Vn n/ MnFnn-

GAP-A PIC-TYPE FLUID CODE 439

If we now let VP, be interpolated from this new V(L), the new particle velocity V" is
given by

(12) V +V F(V - (12) ~~~~~Vn = Vn + n(Vn -Vn)1

and we again achieve momentum conservation:

(13) EMnVn =MnVn +MnFnn -EMnFnVn =MnVn

Using this method, the dissipation becomes

av AX2 a t-av\

(14) ~~~~~~at -6At aX a

plus lower-order terms. F is an average taken over the Fn's in a cell. The derivation
of (14) is given in the appendix.

The smoothing is performed along with the rest of the algorithm and requires no
additional passes through the particle table. There is no stability criterion associated
with this artificial viscosity, it has a purely stabilizing effect.

The inclusion of the smoothing operation into the basic algorithm modifies (1),
the system of equations being solved. Mass conservation is still rigorously maintained,
but velocity and energy smoothing introduce viscosity and heat conduction. Thus,
from the form of Eq. (14), we find that the physical system being modeled is given by

ap + a(pv) =
at ax

av av ? ap a iavX 0
p?PVax ax ax 'ax,

(15) de = Tds - pdr,

(as as\ (av 2 a ad ae\
pT - V +) - 2 aX)+ ax 1ax \ataax/\

T = T(e, p),

where a1 and a2 are related to the F of Eq. (14). The system is solved by the GAP
algorithm to first order in AT, second order in AX, and second order in 1IN.

We see from (15) that viscosity and heat conduction can be incorporated into
the GAP algorithm through the smoothing operation. The coefficients a1 and a2 are
obtained from the particle Fn's and can be given as functions of the particle thermo-
dynamic variables, En and Un. If a1 and a2 are not equal, different Fn's must be
defined for the energy smoothing and velocity smoothing. To treat shocks, however,
the Fn is chosen to yield a shock thickness of 2 or 3 AX rather than from physical
considerations.

We conclude the presentation of the GAP algorithm with a discussion of the
method of determining Fn in the absence of viscosity or heat conduction. We have

440 B. M. MARDER

seen that Fn must satisfy three requirements:
1. OF~n S 1,

2. Fn proportional to At,
3. Fn very small in smooth isentropic regions but sufficiently large in shock

regions to give sharp shocks.
Determining a form of Fn is not unlike determining a form for a von Neumann

[3] type artificial viscosity; both, a functional form and a coefficient, are required. A
form that works well is

| 1 Fn* > 1 ,
dlI

(16) Fn = AXAt= F* if O S F* < 1,

0 Fn* < ?.

The coefficient "a" is chosen such that Fn 1 in strongly shocked regions. Notice
that in this definition of Fn only particle quantities enter. The Fn given by (16) is

only a suggestion, other forms may be equally serviceable. The form of Fn used in the

following problems is (16). For the piston problem, an additional term csAt/AX was
added.

T= .693
4.5

4.0

3.5

3.0

2.5
0

2.o

1.5

1.0

0.0

0.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
x

FIGURE 2. Infinite strength shock. csAT/Ax = .67

Figures 2 and 3 show the density profile of an infinite strength shock obtained
using the GAP code. In Fig. 2, csAt/zX = .67, while, in Fig. 3, csAt/Zx = .0067,

where cS is the sound velocity behind the shock. In both runs, y was taken to be 5/3.
The density takes on nearly its predicted value of 4 behind the shock. The pressure
and shock speed also assume correct values. Five particles per cell were used with 100
cells. The shock thickness is under 3Ax. Although the time step in Fig. 3 is one-

GAP-A PIC-TYPE FLUID CODE 441

T= .700
4.',

4. 0

3. 0

2.5
0

2.0

1.5

1. CI

1-. C-1 ,
,. .7 . 9

l
0.ci.4 ci.'' .1l .2S .3 .4 .5J .6 .7 .8 .91 1 .1]

x

FIGURE 3. Infinite strength shock. csAT/Ax = .0067

hundredth that of the one used in Fig. 2, the shock thickness is virtually unchanged

and no oscillations are induced behind the shock.
Figures 4 and 5 show the density and sound speed squared, Pyp/p, obtained in a

a rarefaction of gas into a vacuum. csAt/Ax = .7 where cS is the sound speed of the

undisturbed gas. Notice that the sound speed is well behaved at the gas-vacuum inter-

face, indicating that the code did not generate unwanted entropy in the expansion.
This problem was initiated with 90 particles per cell occupying a third of the 100

available cells.
A final one-dimensional test was performed on the diaphragm problem. Two

regions of gas at equal temperature but different densities are separated by a diaphragm

which is removed at t = 0. We took a density ratio of two, with 20 and 10 particles

per cell. Figure 6 shows the subsequent density profile with a rarefaction, contact

discontinuity, and shock. The numerical solution differs by less than 1% of the analytic

solution in all regions except in the slight jitter by the contact discontinuity.

The three test problems presented here, while quite simple, are not at all trivial.

As would be expected of any useful fluid code, GAP accurately handles shocks,

rarefactions, and contact discontinuities.
In the original PIC code, only the position and mass are retained as particle

quantities. All other information is stored as grid variables, and the particles transport
this information between cells. As the particles move from one cell to another they

carry a portion of the cell's mass, momentum, and energy with them to their new cell.
The momentum and energy equations are solved on the grid as partial differential

equations. In GAP, because each particle carries all its thermodynamic properties, the
energy equation can be solved as an ordinary difference equation. Since no partial

442 B. M. MARDER

T= 160
1.0

.9

.8

.7

.6

0 2 \

I 5

.4

.3

.2

. 1

0.01 _
0.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

x

FIGURE 4. Density in rarefaction

T= .1E,0
1.8

1.6

1.4

1.2

1.0
N

.8

.6

.4

.2

0.01
0.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

x

FIGURE 5. Sound speed squared in rarefaction

differential equations are explicitly solved and since the smoothing operation directly
influences each particle even when it does not cross cell boundaries, the stability prop-
erties of GAP tend to be quite good.

Extending the code to handle two-dimensional flows is straightforward in a plane
geometry but requires some care in cylindrical coordinates. In that case, the particles
may be thought of as hoops about the axis of symmetry, therefore, to achieve a uni-
form initial density, either the number of particles must increase with radius or the

GAP-A PIC-TYPE FLUID CODE 443

T= .240
1.4

1.3

1.2

I1 . 2

i .0

C l. C 1 .3 .4 .5 . 71 .7 .: a 1 .':
x

FIGURE 6. Diaphragm problem

mass of the particles must be proportional to the initial radius with a uniform loading.
The latter method gives better resolution near the axis but is more complicated.

III. An Application. Two-dimensional versions of this code are being used to
study a problem in magnetohydrodynamics: the simulation of the plasma focus [4]
experiment. In this device, a plasma is magnetically driven down and around a cylin-
drical electrode producing very high temperatures and densities at the center. Figures
7 through 9 depict the time history of such a device as run with the GAP code on a
CDC 7600. The cylindrical electrode has a radius of about 2.4 cm and is 10 cm long.
The first 3 cm are surrounded by an insulating ring across which the plasma first breaks
down. A current is driven along the plasma-vacuum interface between the inner elec-
trode and outer wall. This creates a magnetic field in the (white) vacuum region which
interacts with the current to produce a J x B force on the plasma. The darker regions
in the plasma represent compressed gas and are separated from the undisturbed plasma
by a shock front. There were 25 particles per cell on a 30 x 40 grid and the computing
was 2 minutes. An attempt was made in this simulation to describe the experiment
with sufficient accuracy to influence future design considerations. To this end, the
external circuitry as well as the plasma-produced inductance were used to compute
currents and voltages.

Since the experiment was being performed in conjunction with the numerical
calculations, it was possible to check the code's reliability by how accurately it pre-
dicted the experimental behavior. In this respect, it was quite good. The gross hydro-
dynamics of the experiment were very accurately reproduced. That is, the time at
which the shock hits the outer electrode, the time when it reaches the end of the inner
electrode, and the time of peak collapse were correct to within a tenth of a microsecond.

444 B. M. MARDER

T= .620MCS
5

4

3

0 2 4 6 a 10 12 14 G

Z (CM)

FIGURE 8. Simulation of plasma focus using GAP

T4i .219MCS

4

3

o 2 4 6 8 10 12 14 1i
Z (CM)

FIGURE 9. Simulation of plasma focus using GAP

0 2 4 is 8 1 0 1 2 1 4 . 1 G.

FIGU~~~~~XR E 9. Siuain of pamfouusnGA

A word about boundary conditions might be appropriate here. On solid surfaces
or surfaces of reflection, one has zero normal velocities. A particle which passes through
such a surface can be elastically, or inelastically, reflected. That is, its position, velocity,
and internal energy are suitably altered. In addition, the normal component of the grid

velocity used in smoothing is set to zero. Particle-in-cell codes such as GAP and PIC
are well suited to handle such boundary conditions.

IV. Some Concluding Remarks. In this section, I would like to review some of

the differences between GAP and the earlier PIC code. One of the fundamental dif-

GAP-A PIC-TYPE FLUID CODE 445

ferences is the manner in which the two codes treat thermodynamic variables. The
separation of the entropy generation and numerical smoothing from the rest of the
GAP algorithm allows one to have both temporal and spatial control over the amount
of numerical diffusion introduced through the parameter Fn. Thus, except where it
is required, this diffusive entropy generation can be kept small, or even eliminated.
Another desirable feature of the artificial viscosity used in GAP is that it enters as a
viscous particle drag-not as a partial differential equation. Thus, it does not require
that any stability criterion be satisfied. Although PIC has a type of smoothing which
apportions particle quantities uniformly in a cell, an additional von Neumann viscosity
is required in stagnation regions. The form of the GAP smoothing also allows the
particles to better resolve quantities on a subgrid level,

One obvious disadvantage to GAP is that since the particles retain more of an
individual identity, more memory is required. With large-core modern computers and
extended memory devices, unavailable when PIC was developed, this may not be too
serious. GAP requires neither more particles per cell nor more cells than PIC.

Finally, since the logic in GAP is quite simple, with only ordinary differential
equations being solved, the programming tends also to be simple and straightforward.

Acknowledgments. I wish to thank Colonel George Cudahy for his helpful sug-
gestions. I appreciate also the discussions with Dr. Francis Harlow and his coworkers
which helped me understand the excellent earlier work in this field.

Appendix. Equation (14) is derived in this section. Referring to Fig. 1, assume
each cell contains N evenly spaced particles. The particles in the cell (L - 1, L) will
be subscripted with "n" while for those in (L, L + 1) we will use "m". Thus, >Vm

means the sum of the velocities of particles in the second cell. Assume that all particles
have the same mass.

Before any smoothing is performed, we can define an average velocity at grid
location "L":

V*(L) = (Vn5n + Vm85m)/ (n + ?m)

Ignoring the contributions of particles lying before (L - 1) or past (L + 1), we obtain
the mean velocities defined by Eq. (11)

V(L 1) = EVnfn5n fn n V(L + 1) = EVmfm8m/ fm5mX

V(L) = (Vnfnf5n + Vmfm'5m)/E(fn8'n + tfmm)

The new particle velocities defined by (12) are

Vn = Vn + Fn {V(L -)5n + V(L))n?- Vn}

Vm = Vm + Fm {V(L)?m + V(L + 1)m Vm}.

Using these, the new average velocity at "L" is

446 B. M. MARDER

V**(L) = 1:+ Vm8)/(5n + ?'

We then have

V**(L) - V*(L) = {V(L- EF A + ?(L)IFn52

? D(1 -Fn)Vn5n ? V(L)EFm85

? V(L + 1)EFm8m5m

? (l -Fm) Vm5
I
m-Vn5n

-
VmFm4 /,(8n + ?m)

The assumption of uniform loading implies

8n = 8m = (2n-1)/2N, 1 n < N, = 1-

We also assume that Fn is constant in a cell so that Fn = F(L - ?) and Fm = F(L + 1/2).

Using the relations

68 =N/2 and 1n = N/3-1/12AT,
we find

V**(2) - V*(2) = PV(L + 1)F(L + 1/2) + V(L - 1)F(L -/2)

- -(L)(F(L + Y2) + F(L -1/2)) + O0
1)

which can be written

V**(L) - V*(L)
At

=AX2 6 F(L ? ?/2)V(L + 1) V(L) _ F(_ V(L) - V(L-1) UAX?O(1\
6 6At AXIAXN 2

Finally, we arrive at Eq. (14),

av lA1'X2 a (a v N (-x4N (
at = 6 At ax I Fa) + O(At) + 0 +0 3t 6 At \ ax /At N

Los Alamos Scientific Laboratory
University of California

P. 0. Box 1663
Los Alamos, New Mexico 87544

1. F. H. HARLOW, "The particle-in-cell computing method for fluid dynamics," Methods in
Computational Physics, vol. 3, Academic Press, New York, 1964.

2. R. COURANT & K. 0. FRIEDRICHS, Supersonic Flow and Shock Waves, Interscience,
New York, 1948. MR 10, 637.

3. J. VON NEUMANN & R. D. RICHTMYER, "A method for the numerical calculation of
hydrodynamical shocks," J. Appl. Phys., v. 21, 1950, pp. 232-237. MR 12, 289.

4. J. W. MATHER & P. J. BOTTOMS, "Characteristics of the dense plasma focus discharge,"
Phys. Fluids, v. 11, 1968, pp. 611-618.

